Programming
Machine Learning: the Gathering
In Magic: the Gathering, a collectible card game, competitive players tend to gravitate towards a few dozen of the best decks made up out of a subset of all available cards. For instance in the Legacy format nearly all 18000 cards can be played, yet you’ll only see about 500 show up in tournaments with some cards (e.g. Brainstorm and Force of Will) showing up in > 50% of all high-ranking decks. When playing in such an event it is key to quickly identify your opponent’s deck and adapt your own game plan accordingly. Top players are able to very quickly do this, bad ones like myself need a few more turns. Here we’ll see if we can train a model that takes in a few known cards and outputs a prediction which deck is being played. In this blog-post I’ll show you how I made a classifier that can take a list of known cards in your opponent’s deck and return a list of possible decks they are playing. But let’s start with two examples of what it can do first. Imagine this scenario, on the first turn your opponent leads with Wasteland, on his second turn he plays Read more…